Abstract from the paper in the article:

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL109280

Large constellations of small satellites will significantly increase the number of objects orbiting the Earth. Satellites burn up at the end of service life during reentry, generating aluminum oxides as the main byproduct. These are known catalysts for chlorine activation that depletes ozone in the stratosphere. We present the first atomic-scale molecular dynamics simulation study to resolve the oxidation process of the satellite’s aluminum structure during mesospheric reentry, and investigate the ozone depletion potential from aluminum oxides. We find that the demise of a typical 250-kg satellite can generate around 30 kg of aluminum oxide nanoparticles, which may endure for decades in the atmosphere. Aluminum oxide compounds generated by the entire population of satellites reentering the atmosphere in 2022 are estimated at around 17 metric tons. Reentry scenarios involving mega-constellations point to over 360 metric tons of aluminum oxide compounds per year, which can lead to significant ozone depletion.

PS: wooden satellites can help mitigate this https://www.nature.com/articles/d41586-024-01456-z

  • @intensely_human@lemm.ee
    link
    fedilink
    English
    07 months ago

    So you’re saying that in the 70s they had predictions about how things will go bad for the next century?

    Where are these predictions? It’s been 50 years so at least some of these predictions should be checkable now.

    I would feel so much better if I could see some examples of climate science predictions being proven accurate.

    • @GoodEye8@lemm.ee
      link
      fedilink
      English
      17 months ago

      It’s pretty public knowledge by now. If you search “ExxonMobil climate prediction” I’m sure you can find a starting point. I recommend finding all the Exxon papers because they’re quite eye opening.