I’ve updated @Mistral@lemmings.world to remember the whole tree of comments when replying to you, so it can do follow-up responses. You still have to mention it on every message, though. Example in the comments.

  • @MistralB
    link
    28 months ago

    Sure, let’s give it a try! Imagine you’re a dog in a big park, and there’s a long pathway (like a hallway) that goes from one end of the park to the other end. Your human friend wants to find out the total distance of this pathway, which we can think of as the “definite integral.”

    Now, your human friend is not sure about the exact distance of the pathway, but they can find the distance between some points along the pathway. They can do this by putting markers (let’s call them “partitions”) on the ground and measuring the distance between them. We can call the distance between the markers “widths.”

    Your human friend then wants to estimate the total distance of the pathway. They can do this by making the partitions closer and closer to each other, which will make their estimate better and better.

    Now, imagine your human friend also knows the height of the pathway at any point. We can think of the height as the “function” we want to integrate. Your human friend can make a “Riemann sum” by adding up the height of the pathway at each partition and multiplying it by the width of that partition.

    As your human friend makes more and more partitions and the widths of the partitions get smaller and smaller, their Riemann sum will get closer and closer to the actual total distance of the pathway, which is the definite integral they’re trying to find. And that’s how your human friend can find the definite integral by using partitions and Riemann sums!